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4.1   Introduction 43 

Structural relaxation refers to changes in the kinetic and thermodynamic properties of 44 

nonequilibrium amorphous materials as they approach the amorphous (not crystalline) 45 

equilibrium state and is intimately related to the glass transition phenomenon and glassy state 46 

relaxation. A large portion of this chapter is accordingly devoted to thermodynamics and the 47 

glass transition. There are two principle differences between the kinetics of structural relaxation 48 

and the other relaxations considered in earlier chapters. The first is that the underlying 49 

phenomena are less well characterized and are often based on extrapolations. They are not 50 

understood at anywhere near the level of electrical and visco-elastic relaxations - there are no 51 

Maxwell equations nor Newton's laws for succor for example. This issue essentially arises from 52 

the central role played by temperature because "everything changes with temperature". The 53 

second difference is that structural relaxation is strongly nonlinear because the average structural 54 

relaxation time depends on the thermodynamic state as well as on temperature – thus the 55 

isothermal relaxation time changes as relaxation towards thermodynamic equilibrium proceeds. 56 

Mathematically this is handled by making the average relaxation time a function of time and 57 

replacing the elapsed time with the reduced time defined below. 58 

 Structural relaxation is most significant within and near the glass transition temperature 59 

range that is often but misleadingly referred to as the "glass transition temperature" Tg. Typically 60 

Tg is defined as lying within the glass transition temperature range (often but not always 61 

midway) and this tradition is followed here until definitions of the glass transition temperature 62 

are discussed in 4.8.3.1. Essentially "Tg" will be used as an abbreviation for "glass transition 63 

temperature range". 64 

The SI unit for temperature (Kelvin, symbol K) is used throughout. As usual constant 65 

pressure processes are referred to as isobaric, those at constant volume as isochoric, and those at 66 

constant temperature as isothermal. The convention that intensive properties such as pressure and 67 

temperature are written in lower case and extensive properties such as volume, enthalpy, entropy, 68 

heat capacity etc., are written in upper case is not followed here as is often done in textbooks. 69 

The principle reasons for this are that an exception must always be made for temperature T to 70 

avoid confusion with the time t, and that units indicate the distinction anyway (per kg or per 71 

mole for extensive quantities for example). Boltzmann's constant is written as kB and the ideal 72 

gas constant is written as R as is customary. The symbol τ is used for a relaxation time 73 

considered as a variable and τ0 refers to any characteristic relaxation time as a parameter in 74 

expressions such as the nonexponential WW decay function. 75 

 76 

4.2   Elementary Thermodynamics 77 

Thermodynamics is fraught with subtleties that require extensive study to master, so the 78 

present exposition is necessarily simplified and abbreviated. Recommended books on the subject 79 

include Fermi [1] (terse), Lewis and Randall [2] (aimed at physical chemists), and Landau & 80 

Lifshitz [3] (aimed at physicists). Be aware that [3] dispenses with Boltzmann's constant (for 81 

good reason) so that T in many of its formulae should be replaced with kBT to make contact with 82 

common usage – this conversion has been made for the formulae from [3] cited below. 83 

 84 

4.2.1 Temperature Scales 85 

 Four scales are extant: Fahrenheit (
o
F), Celsius or Centigrade (

o
C), Rankin (

o
R), and 86 

Kelvin (K). Only the Kelvin scale is used in thermodynamics (and in most of science for that 87 
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matter) but 
o
C is occasionally used, especially in the chemical and material science literatures. 88 

Only in the US is the Fahrenheit scale used in everyday use. 89 

The Celsius and Fahrenheit scales are defined by the melting (Tm) and boiling (Tb) 90 

temperatures of water at atmospheric pressure. For the Fahrenheit scale Tm is 32
o
F and Tb is 91 

212
o
F, the values of which have historical empirical roots: 0

o
F was originally defined to be the 92 

lowest temperature at which water could be frozen when a salt was added (thus in the US the 93 

sodium chloride most often used for ice/snow melting is only effective down to Fahrenheit 94 

temperatures in the low teens), and 100
o
F was defined to be the average temperature of human 95 

blood. These values have since been modified to simplify the conversion between the Fahrenheit 96 

and more objective Celsius scales. For the Celsius scale Tm is defined to be 0
o
C and Tb is 100

o
C. 97 

Thus the difference (Tb - Tm) is 100
o
C and 180

o
F, and after accounting for the 32

o
 difference at 98 

the melting temperature of ice the equations for conversion between the Fahrenheit (F) and 99 

Celsius (C) scales are 100 

 32 /1.80,

1.80 32.

C F

F C

 

 
  (4.1) 101 

The temperature at which the two scales are numerically equal is therefore –40
o
. 102 

 The 
o
R and K scales are based on the lowest possible temperature being zero (for the 103 

justification of such an absolute zero see any introductory physics or physical chemistry text as 104 

well as [1]–[3]). The absolute Kelvin scale is based on the experimental result that such an 105 

absolute zero occurs at –273.15
o
C and the Rankin scale is based on an absolute zero that occurs 106 

at about –459.7
o
F. 107 

 108 

4.2.2 Quantity or Amount of Material 109 

 The most common metric is the mole whose unit is the mol and equals Avogadro's 110 

number 
236.02 10AN   . Even although the mole is a pure number it is useful to keep track of it 111 

as if it had the unit mol because it is clearly and importantly different from just the number of 112 

particles being considered. When using the mol it is important to be aware of the question "mol 113 

of what?". For example the gaseous phase of the element sulfur consists of molecules such as S2, 114 

S4, S6 and S8 so that per mol of sulfur is ambiguous. 115 

 116 

4.2.3 Gas Laws and the Zeroth Law of Thermodynamics 117 

The ideal gas equation is 118 

BPV nRT Nk T  ,          (4.2) 119 

where P is pressure, V is volume, T is temperature, N is the number of entities, and n is the 120 

number of moles. Equation (4.2) can be derived from what is probably the most basic application 121 

of statistical mechanics to a collection of perfectly elastic point particles (see any introductory 122 

physics or physical chemistry text). A noteworthy result of the statistical mechanical analysis is 123 

3

2
KE nRT ,           (4.3) 124 

where KE  is the average kinetic energy per mole of particles. Equation (4.3) provides a 125 

fundamental interpretation of temperature – it is a measure of the average energy of all N 126 

molecules (for an ideal gas the kinetic energy is entirely translational but in general includes 127 

vibrational and rotational degrees of freedom). This equivalence is discussed in [3] and is the 128 

reason that kB is omitted from its equations. A definition of temperature was recognized to be 129 
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logically necessary well after the 1
st
 and 2

nd
 Laws had been established and the adopted 130 

definition is therefore referred to as the zeroth law of thermodynamics: ''If C is initially in 131 

thermal equilibrium with both A and B, then A and B are also in thermal equilibrium with each 132 

other. Two systems are in thermal equilibrium if and only if they have the same temperature". 133 

 Van der Waals improved the ideal gas equation by introducing two corrections: 134 

(i) (i) The finite volume of the particles is subtracted from the volume of the system – thus V in the 135 

ideal gas equation is replaced by  V nb  where b is an empirical constant reflecting the 136 

nonzero particle volume. (ii) Attractive (van der Waals) forces between the particles reduce the 137 

gas pressure because of two factors: (a) The average momentum per particle is reduced in 138 

proportion to  /n V , thus reducing the impulsive force per particle arising from each reflection 139 

from the walls of the container; (b) the reduction in total momenta is proportional to the product 140 

of the reduction per particle and the number density  /n V  of particles. Thus the pressure is 141 

reduced in proportion to  2 2/n V  and the Van der Waals equation becomes 142 

  2 2/P an V V nb RT   ,         (4.4) 143 

where a is another empirical constant. The latter depends in part on the polarizability α of the 144 

particles because of the theoretical van der Waals interaction (London) potential L between 145 

identical particles separated by a distance r 146 

 

2

2 6

0

3

4 4 e

hv
L

r





 
  

 
,          (4.5) 147 

where h is Planck's constant, v is the Bohr ground state orbiting frequency and hv is the energy of 148 

the Bohr ground state. An excellent heuristic derivation of the London potential has been given 149 

by Israelachvili [4] using the polarizable Bohr atom (this derivation is acknowledged to be based 150 

on an account by Tabor that is unfortunately not referenced). The Israelachvili/Tabor result 151 

differs from the exact eq. (4.5) only by the constant (1.00 rather than 0.75). 152 

Equation (4.4) is a cubic equation in V that can rationalize the first order transition from 153 

gas to liquid (using the Maxwell construction) when gas particles have an attractive force 154 

between them (see any introductory physics and physical chemistry textbook). 155 

 156 

4.2.4 Heat, Work and the First Law of Thermodynamics 157 

 As noted above the temperature of an ideal gas is proportional to the average kinetic 158 

energy per ideal gas particle [eq. (4.3)] ("thermal energy"). Heat (Q) is thermal energy in transit 159 

that spontaneously flows from a system of higher thermal energy (higher T) to that of lower 160 

thermal energy (lower T). The reverse process requires an input of energy (work W) defined by 161 

 
2

1

V

V

W P V dV  .          (4.6) 162 

 The temperature of any material is a measure of its internal energy U [a generalization of 163 

eq. (4.3)] and the balance of heat transfer Q, U and work W is given by the First Law of 164 

Thermodynamics: 165 

U Q W             (4.7) 166 

that is valid for all systems. Equation (4.7) adheres to the convention that W is positive for work 167 

done on the system. An alternative convention regards W as positive for work done by the system 168 
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and the sum on the right hand side of eq. (4.7) then becomes a difference. There is also more to 169 

eq. (4.7) than its algebra because although both Q and W depend on the path taken from one state 170 

to the other their sum U is independent of the path. Path invariant functions such as U are often 171 

called state functions. 172 

 173 

4.2.5 Entropy and the Second Law of Thermodynamics 174 

 The path dependence of 
B

A

Q Q   is eliminated by dividing all heat transfers δQ by the 175 

temperature T at which each transfer occurs. The quantity δQ/T is the change in entropy dS and 176 

the state function entropy S is given by 177 
B

B

A
A

Q
S dS

T


 

  .          (4.8) 178 

Entropy is not generally conserved and actually increases for irreversible processes. Consider for 179 

example the spontaneous transfer of a quantity of heat Q from a body A at temperature TA to 180 

another body B at a lower temperature TB. The entropy of the two bodies together increases 181 

because the entropy Q/TA lost by A is smaller than the entropy Q/TB gained by B. This analysis 182 

depends of course on neither heat nor matter (with its internal energy U) entering or leaving the 183 

system consisting of A+B, and on no work being done on or by the system - the system A+B is 184 

then said to be closed or isolated. The Second Law of Thermodynamics states that for all 185 

processes taking place in a closed system the total change in entropy ΔS is greater than or equal 186 

to zero: 187 

0S             (4.9) 188 

where the equality obtains only for adiabatic and idealized equilibrium processes. 189 

 The statistical mechanics of Boltzmann yields a simple relation between the entropy S of 190 

a system and the number   of possible configurations available to the system: 191 

lnBS k             (4.10) 192 

where kB is Boltzmann's constant = R/NA (although it was Planck who introduced it, not 193 

Boltzmann [5]). More probable states thus have higher entropies so that eq. (4.10) provides an 194 

interpretation of the Second Law – systems naturally migrate to states with more configurations 195 

that have a greater probability. The kinetics of such migrations is a major theme of this chapter. 196 

The largest practical problem with applying eq. (4.10) is obtaining an expression for   - most 197 

often this cannot be done even for idealized model systems. None other than Einstein gave a lot 198 

of thought to eq. (4.10) as well as several other statistical mechanical matters such as 199 

fluctuations. Einstein's contributions to and analyses of statistical physics and thermodynamics 200 

are discussed in Chapter 4 (entitled "Entropy and Probability") of what this author regards as the 201 

definitive biography of Einstein [5]. 202 

4.2.6 Heat Capacity 203 

 The increase in a body's temperature dT for any given heat input δQ is determined by the 204 

body's isobaric and isochoric heat capacities Cp and Cv 205 
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            (4.11) 206 

where δQ has been replaced by ∂Q to indicate that the heat transfer is direct and not dependent 207 

on path. Heat capacities per unit mass are too often referred to as "specific heats" that is 208 

confusing and misleading (what prevents the use of "specific heat capacities"?). Heat capacity 209 

has the same units as entropy but the two are physically different: entropy is a process dependent 210 

quantity related to heat transfer at a particular temperature or a material dependent quantity 211 

related to the randomness of the material, whereas heat capacity is a material property that refers 212 

to the change in temperature for a given heat input that is independent of the randomness of the 213 

material and does not depend on how heat is input to the material. 214 

The isobaric and isochoric heat capacities differ because at constant pressure some of the 215 

heat input produces an increase in volume that does work on the environment [eq. (4.6)] and 216 

therefore reduces any increase in the internal energy U and temperature T so that p vC C  [2]: 217 

2

0P V

T

TV
C C




   ,          (4.12) 218 

where  219 

1

P

V

V T


  
   

  
          (4.13) 220 

is the isobaric expansivity and 221 

1
T

T

V

V P


  
  

 
          (4.14) 222 

is the isothermal compressibility. Mechanical stability demands that 0T   so that eq. (4.12) 223 

ensures p vC C  because V and T are positive definite and 2  is necessarily positive even when 224 

α is negative (supercooled water for example). It can be shown [6] that   for solids arises from 225 

odd number vibrational harmonics (even numbered harmonics do not). The isobaric heat 226 

capacity Cp is almost always considered in this chapter, an exception being the theoretical Debye 227 

heat capacity discussed next. 228 

 229 

4.2.7 Debye Heat Capacity and the Third Law of Thermodynamics  230 

 Quantum phenomena affect Cp(T) and Cv(T) at low temperatures. Einstein (Chapter 20 231 

of [5] entitled "Einstein and Specific Heats") was the first to apply quantum considerations to the 232 

heat capacity and thus was the first to deduce that 
0

lim ( ) 0v
T

C T


 , although his result that 233 

0
lim ( )v
T

C T T


  is quantitatively incorrect. Debye extended Einstein's result by introducing a 234 

distribution of phonon (collective vibrational quanta) energies rather than Einstein's heuristic 235 

assumption of a single energy. The Debye result for N oscillators is [6] 236 
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,      (4.15) 237 

where ΘD is the Debye temperature corresponding to a maximum cutoff energy for the 238 

distribution of phonon energies and /D Dx T . For T → 0 the parameter xD →   and the 239 

integral in eq. (4.15) is a calculable constant so that 3

0
lim ( )v
T

C T T


 . The T
3
 behavior is observed 240 

for crystalline materials but not for glasses for which 
0

lim ( )V
T

C T T


 . The latter has been 241 

rationalized in terms of two state models [6] but is not understood at a fundamental level because 242 

the two states are unknown. In both cases however it remains true that 
0

lim ( ) 0v
T

C T


  so that the 243 

entropy 
0

00 0
lim lim ln

T

v
T T

S S C d T






 
   is also zero and eq. (4.10) then implies that 1  and there 244 

is only one possible state at 0 K. This is the basis of the Third Law of Thermodynamics 245 

(originally called the Nernst Theorem), one of the best expressions of which is probably that due 246 

to Fermi [1]: 247 

"…to the thermodynamical [sic] state of a system at absolute zero there corresponds 248 

only one dynamical state of lowest energy compatible with the given crystalline 249 

structure, or state, or state of aggregation of the system". 250 

Immediately after that definition Fermi adds an important comment: 251 

"The only circumstance under which Nernst's theorem might be in error are those for 252 

which there exist many dynamical states of lowest energy [i.e. degeneracy]. But even in 253 

this case the number of states must be enormously large (of the order of exp( )N …) if 254 

the deviations from the theorem are to be appreciable. Although it is not theoretically 255 

impossible to conceive of such systems, it seems extremely unlikely that such systems 256 

actually exist in nature". 257 

Some sort of "ideal glass" with an energy degenerate number of configurations much fewer than 258 

exp( )N  at 0 K is perhaps a candidate for a "not theoretically impossible" state. 259 

 260 

4.3   Thermodynamic Functions 261 

4.3.1 Entropy S 262 

Q
dS

T


 .           (4.16) 263 

As with eq. (4.7) for the First Law there is more to equation (4.16) than just the algebra. The use 264 

of δQ rather than dQ indicates that as noted above in §4.2.2.4 the total heat 

B

A

Q  transferred to 265 

or from the system from state A to state B is path dependent but the total entropy change 266 
B

A

S dS    is not. 267 

 268 

4.3.2 Internal EnergyU  269 

This is defined by eq. (4.7). In terms of the other thermodynamic functions defined here: 270 

dU TdS PdV  .          (4.17) 271 
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 272 

4.3.3 Enthalpy H 273 

 Defined as 274 

   

;

.

H U PV

dH TdS PdV VdP PdV

TdS VdP

 

   

 

        (4.18) 275 

Enthalpy relaxation is discussed in detail later in this chapter. 276 

 277 

4.3.4 Free Energies A and G 278 

 Free energies are thermodynamic potentials (defined as such in [3]) because systems are 279 

driven to decrease their free energies. The Helmholtz free energy A and Gibbs free energy G 280 

correspond to isochoric and isobaric conditions respectively: 281 

,

,

A U TS

dA PdV SdT

 

  
          (4.19) 282 

 283 

.

G H TS U PV S

dG VdP SdT

    

 
          (4.20) 284 

The negative sign of the TS term in eqs. (4.19) and (4.20) signifies that systems are in part driven 285 

to equilibrium by increasing their entropy. The other term signifies that systems are also driven 286 

to decrease their energy U or H. It is the balance of these potentially conflicting drives that 287 

defines the eventual direction of a process or reaction, as illustrated by the thermodynamics of 288 

DNA helix formation: it is energetically heavily favored by hydrogen bonding between bases but 289 

entropically expensive because it is more ordered compared with the disorder of separated 290 

strands and more disordered ambient water molecules. The coding and decoding of DNA 291 

therefore depends on the small difference between large enthalpy and entropy factors.  292 

 293 

4.3.5 Chemical Potential μ 294 

 For a species i this quantity is denoted by μi and is needed when there are a number of 295 

different entities in a system. If this number is ni for species i then [3] 296 

, , , ,

i

i i i iP T T V S V S P

G A U W

n n n n


          
          

          
.      (4.21) 297 

Which derivative is chosen depends on the variables in which μi is to be expressed – for example 298 

if G is chosen the variables are {P, T} and if A is chosen the variables are {V, T}. The entities 299 

can be atoms, molecules, ions, even electrons. For charged entities the electrostatic potential 300 

iz e  must be added to μi to give the electrochemical potential 
E

i  301 
E

i i iz e              (4.22) 302 

(zi is the charge on the entity i in electron charges, e is the (positive) electron charge, and φ is the 303 

electrostatic potential). In solid state physics 
E

i  is the Fermi energy F  of electrons. 304 

 For a system of just one species the chemical potential is simply a thermodynamic 305 

potential (A, G) per entity [3]. For example when the G derivative in eq. (4.21) is chosen then 306 

d sdT vdP    ,          (4.23) 307 
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where s and v are the entropy and volume per entity (cf. eq. (4.20)). Equation (4.23) does not 308 

apply to an individual entity however – it simply expresses the macroscopic quantities in eq. 309 

(4.20) in different units (per particle rather than per mole of particles). Thermodynamics cannot 310 

be applied to single entities because its functions are averages and standard deviations 311 

(fluctuations) for macroscopic numbers of entities (in statistical mechanics the limit of an infinite 312 

number of entities is referred to as the "thermodynamic limit"). 313 

 314 

4.3.6 Internal Pressure 315 

Defined as  /
T

T S V   and motivated by 316 

.
T T

U S
dU PdV TdS P T

V V

  
        

  
      (4.24) 317 

 318 

4.3.7 Derivative Properties 319 

Properties that are defined in terms of the first or second derivatives of free energy with 320 

respect to temperature, pressure or volume are often referred to as first or second order functions. 321 

For example 322 

,
S T

H G
V

P P

    
    

    
         (4.25) 323 

 324 

,
S T

U A
P

V V

    
     

    
         (4.26) 325 

and 326 

V P

A G
S

T T

    
     

    
         (4.27) 327 

are first order functions and Cp eq. (4.11), Cv eq. (4.11), α eq. (4.13), and κT eq. (4.14) are second 328 

order functions. In addition to eq. (4.12) the difference between pC  and VC  is also given by 329 

 
P V V V

P P P

PVH U
C C C C

T T T

     
         

       
.     (4.28) 330 

4.4   Maxwell Relations 331 

 The Maxwell relations relate the derivatives of various thermodynamic functions. For 332 

example 333 

,
S V

T P

V S

    
    

    
          (4.29) 334 

 335 

,
S P T V

T V S P

P S V T

          
         

          
       (4.30) 336 

 337 
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.
T P

S V

P T

    
    

    
          (4.31) 338 

Other relations can be obtained from other applications of differential forms. For example  339 

2

2

p

T

C V
T

P T

   
    

   
,          (4.32) 340 

obtained from 341 
2

p

p

T

CS S
C T T

T P P T

     
      

       
        (4.33) 342 

so that 343 

2 2

2

T P P

S V S V

P T P T T

         
          

           
.       (4.34) 344 

Another example is [2] 345 

T P

H V
V T

P T

    
    

    
.         (4.35) 346 

 Many other relations can be derived from the Jacobeans (§1.6) arising from changes in 347 

thermodynamic variables. A summary of these formulae is given in [2]. 348 

4.5   Fluctuations 349 

 Thermodynamic functions F are defined by averages F  over large numbers of entities. 350 

These averages have corresponding variances 
2F  and standard deviations 

1/2
2F  that are 351 

referred to as "fluctuations". These fluctuations are sometimes related to thermodynamic 352 

functions. For example [3] 353 
2

B pk C S             (4.36) 354 

and 355 

2

Bk TV V   .          (4.37) 356 

 Fluctuations have kinetic implications because quantities fluctuate in time and the 357 

fluctuations at time t and a later time t + T can be correlated [3]. Thus fluctuations are of obvious 358 

relevance to relaxation phenomena in general and structural relaxation in particular. The 359 

correlation for a quantity x is defined by 360 

     T x t x t T             (4.38) 361 

where the average is over a distribution of probabilities. As T increases to infinity any "memory" 362 

of the state at time t will approach zero:  lim 0
T

T


 . 363 

4.6   Egodicity and the Deborah Number 364 

 Egodicity is a statement about the equivalence of probabilities in terms of time averages 365 

and various ensemble averages in statistical mechanics. The ensembles are distinguished by their 366 

variables: canonical (n, V, T), micro-canonical (n, V, U), and grand canonical (μ, V, T). The 367 
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essence of ergodicity is illustrated by a simplified traffic analogy. For the analogy to be good it is 368 

required to assume that all drivers on the road behave the same (much less likely than assuming 369 

all molecules act alike). Consider the probability of a driver doing something such as turning 370 

with no turn signal to indicate intent ("event" hereafter). There are two ways to evaluate the 371 

probability that such an event will occur: 372 

(i) Observe traffic behavior in a restricted area (a county say) for a "very long time" and find 373 

the probability that the event occurs. A "very long time" can be loosely defined as the minimum 374 

observation time for which longer observation times would not change the probability. 375 

(ii) Observe all traffic patterns over the country for an "instant" and average them to obtain 376 

the probability of no turn signals. 377 

The ergodic hypothesis asserts that these two probabilities are the same. However if the 378 

time of observation in (i) is too short to include all possibilities then ergodicity is said to be 379 

broken and the time average will be incorrect. This occurs in the glassy state where relaxation 380 

times of years or even millennia are confidently estimated and longer observation times are 381 

impractical. The glass transition phenomenon is correctly said to be "ergodicity breaking" but it 382 

is incorrect to assert that ergodicity breaking is equivalent to a glass transition (see discussion of 383 

the Deborah Number below and the article by Angell [7]). Such assertions ignore the details and 384 

subtleties of the glass transition phenomenon. 385 

A more rigorous discussion of ergodicity is given in [5] (Chapter Four "Entropy and 386 

Probability") from which the following is distilled. Two definitions by Boltzmann are discussed. 387 

The first, dating from 1868, considers the evolution in time of a closed system of N particles in 388 

orbit on a surface of constant energy in 6N-dimensional space. A particular state Si then 389 

corresponds to a point i on the orbit. Now observe the system for a long time T and determine the 390 

time Ti for which it is in the state Si. Then  lim /i
T

T T


 is the probability that the system is in state 391 

Si. Einstein independently introduced the same definition in 1903 and was his favored definition. 392 

Boltzmann's second definition was to calculate the number of ways w of partitioning ni particles 393 

each with energy i  under the constraints that the total energy i iE n   and iN n  are 394 

fixed and (crucially) that the particles are in practice distinguishable (not so quantum 395 

mechanically). Boltzmann then proposed that w was proportional to the probability of any 396 

distribution of {ni} values. The first definition is in principle observable but the second is, in 397 

Pais's words [5], "more like a declaration". Ergodicity asserts that Boltzmann's two definitions 398 

are equivalent and as Pais also stated "This [equivalence] is the profound and not yet fully solved 399 

problem of ergodic theory". 400 

The Deborah number DN [8] is defined as the ratio of the characteristic timescale of the 401 

observed system (typically a relaxation time) and of the measurement timescale. For an applied 402 

sinusoidal perturbation the timescale of observation is the period of oscillation. The glass 403 

transition occurs when the DN passes through unity with changing temperature – for example 404 

during rate cooling through the glass transition temperature range (abbreviated by "Tg" as noted 405 

in §4.1). Above Tg relaxation times are less than 100 s or so and longer observation times are 406 

easily achieved. Relaxation times of years or even millennia are confidently estimated below Tg 407 

so observation times are necessarily much smaller. The DN is also usefully defined as [8] 408 

c

d d dT d
DN Q

dt dT dt dT

      
      

    
,        (4.39) 409 
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where Qc is the cooling rate (the heating rate is not recommended because for DSC scans the 410 

kinetics of recovery are partly determined by the previous thermal history (see [8] for details). 411 

 412 

4.7   Phase Transitions 413 

 These are transitions between different states (phases) of a material. A useful 414 

classification scheme for them was introduced by Ehrenfest who proposed that discontinuous 415 

changes in a property defined by the n
th

 derivative of a thermodynamic potential (free energy A 416 

or G) be termed an n
th

 order transition. Thus melting and boiling for which first order properties 417 

such as V, H and S are discontinuous are 1
st
 order transitions. Transitions for which second order 418 

properties such as the heat capacity Cp or Cv, expansivity  , or compressibility   are 419 

discontinuous are 2
nd

 order transitions, and so on. The Ehrenfest classification is imperfect – for 420 

example λ transitions in metal alloys are referred to as second order transitions but do not fall 421 

into Ehrenfest's classification (but could perhaps be approximated as Ehrenfest third order 422 

transitions). In any event it is useful to discuss the glass transition phenomenon in terms of an 423 

Ehrenfest 2
nd

 order transition. 424 

First some nomenclature. Thermodynamic relations are applied below and above the 425 

transition temperature range and the difference between thermodynamic functions is denoted by 426 

Δ. Thus for an Ehrenfest 2
nd

 order transition ΔV = ΔH = ΔS = 0 because the transition is not first 427 

order. However the various first derivatives of ΔV, ΔH and ΔS are not zero because by definition 428 

an Ehrenfest 2
nd

 order transition exhibits discontinuities in these derivatives. 429 

The pressure dependencies of an Ehrenfest second order transition temperature T2 for 430 

different thermodynamic functions are readily derived using elementary calculus. For volume 431 

 0 T

P T

V V
d V dT dP V dT dP

T P
 

    
         

    
     (4.40) 432 

from which 433 

2 T

V

T

P





  
 

  
,          (4.41) 434 

where eqs. (4.13) and (4.14) for   and T  have been used. Deviations from eq. (4.41) have 435 

often been reported for Tg=T2 (see §4.8.3.3), but O'Reilly [9] has pointed out that T  is 436 

strongly pressure dependent and that reasonable values can be found for it that agree with eq. 437 

(4.41). 438 

For enthalpy 439 

0p

P T P

H H V
d H dT dP C dT V T dP

T P T

        
              

        
   (4.42) 440 

but since 0V   then 441 

2

H p

T
VT

P C

  
 

  
.          (4.43) 442 

For entropy 443 
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    (4.44) 444 

so that  445 

S p

T
VT

P C





  
 

  
.          (4.45) 446 

Note that eqs. (4.43) and (4.45) are the same. 447 

In anticipation of the nonlinear Adam-Gibbs model for structural relaxation discussed in 448 

§4.8.3 an expression for 2 /T P   based on TSc being constant is now given. The condition that 449 

TSc be constant implies 450 
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        (4.46) 451 

so that 452 

2

cTS p c

T
VT

P C S

  
 

   
.         (4.47) 453 

 The Prigogine-Defay ratio   is defined by 454 

 

   

2

2

2

/
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.        (4.48) 455 

It has been shown by Davies and Jones [10] that if 1   then more than one thermodynamic 456 

variable must determine the transition. Values of 1   for T2=Tg have often been reported but 457 

McKenna [11] has suggested that the usually quoted values of Δα, ΔκT and ΔCp are not obtained 458 

under the proper conditions and that if they were then   could be unity within uncertainties. If 459 

one variable is chosen for convenience to determine relaxation behavior then entropy is evidently 460 

better than volume because entropy and enthalpy can accommodate things that volume cannot, 461 

such as bond angle constraints and stresses that are known to affect glassy state relaxation rates 462 

and are presumably factors in liquid relaxation as well. 463 

4.8   Structural Relaxation 464 

An excellent account of this topic is given by Angell et al. [12] that lists questions that 465 

need answering and the then current best answers (essentially unchanged to this day). It also 466 

considers other topics such as ionic conductivity in glasses that are discussed in Chapter Two of 467 

this book. This section is divided into three segments arranged according to three temperature 468 

ranges relative to Tg: (1) T > Tg (supercooled liquids); (2) T < Tg (glasses); (3) T   Tg (glass 469 

transition). 470 

4.8.1 Supercooled Liquids and Fragility 471 

 Supercooled liquids are precursors to glasses formed by cooling through the glass 472 

transition temperature range and their properties are therefore relevant to structural relaxation. 473 
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Relaxation times in supercooled liquids (as well as many liquids above the melting temperature) 474 

rarely conform to the Arrhenius temperature dependence 475 

 0 exp a
A

E
T A

RT


 
  

 
,         (4.49) 476 

where Ea is the Arrhenius activation energy and AA is a constant. Instead they generally adhere to 477 

relations that are often well approximated by the Fulcher equation (see [13] for an excellent 478 

discussion of its history and [14] for a reprint of the original paper): 479 

 0

0

exp F
F

B
T A

T T


 
  

 
,         (4.50) 480 

where AF, BF and T0 are positive constants independent of temperature but material dependent. 481 

The effective Arrhenius activation energy Eeff for the Fulcher relation is 482 

   
0

2

0

ln

1/ 1 /

eff F
E d B

R d T T T

    
     

      

.        (4.51) 483 

Other expressions for  0 T  are discussed in [12] but we select just one here for further 484 

discussion because it is frequently used in the polymer community – the WLF equation: 485 
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,       (4.52) 486 

where T* is a reference temperature that is usually equated to the glass transition temperature Tg 487 

and C1 and C2 are "constants" that depend on T*. The WLF parameters C1 and C2 are related to 488 

the Fulcher parameters BF and T0 by 489 

0 2*T T C             (4.53) 490 

and 491 

1 22.303FB C C ,          (4.54) 492 

where the factor 2.303 arises from the irritating use of log10 rather the natural ln. Equations 493 

(4.53) and (4.54) indicate why C1 and C2 are T* dependent because T0 is an objective measure of 494 

departure from Arrhenius behavior [eq. (4.51)]. The value of C1 for T* = Tg is "universally" 495 

about 17 for polymers but C2 is material dependent. 496 

A fruitful characterization of supercooled liquids is the classification scheme of fragility 497 

introduced by Angell. This scheme has been developed over many publications and is not 498 

amenable to a definitive citation (although [15,16] are useful and [17] includes a list of 499 

references). Reference [17] criticizes some small mathematical issues related to fragility but 500 

these criticisms do not detract from the immense overall value of the concept. 501 

There are two complementary definitions of fragility, thermodynamic and kinetic, that 502 

reflect the intricate and debated relation between the thermodynamic and kinetic aspects of the 503 

glass transition phenomenon (such a relation is the basis of the Adam-Gibbs model [18] 504 

discussed below). The thermodynamic definition is the origin of the term fragility and defines it 505 

in terms of the isobaric heat capacity change  p gC T  over the glass transition temperature 506 

range: large values of  p gC T  imply large increases in the configurational entropy with 507 

increasing temperature above Tg, that in turn produce a large decrease in structural order and 508 

therefore a more fragile structure. The kinetic definition of fragility is essentially a quantitative 509 
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statement of the generally observed positive correlation between  p g
C T  and the departure 510 

from Arrhenius behavior of  0 T , the latter being generally well described by the Fulcher 511 

equation. The kinetic definition was originally expressed in terms of the Fulcher equation but it 512 

has since been more usefully and generally defined in terms of a fragility parameter m that is 513 

essentially a Tg-scaled effective Arrhenius activation energy at Tg that is independent of the form 514 

of  0 T : 515 

 

 
10 0log

/
g

eff

gg
T T

Ed
m

RTd T T





  .         (4.55) 516 

This corresponds to the slope at T = Tg of the "Angell plot"  10 0log   versus /gT T . The limiting 517 

values of 0  are determined by the plausible boundary conditions 
2

0 10   s at  / 1g gT T T T   518 

and 14

0 10   s (vibrational lifetime) as  / 0gT T T  . The minimum value mmin of the 519 

fragility index is the minimum slope of the Angell plot obtained by connecting the two extrema 520 

of 0  with a straight (Arrhenius) line. For the boundary conditions given above 521 

 
 

0

min 10log 2 14 16
g

A

T
m

A

 
     

  

.       (4.56) 522 

The quantity AA in eq. (4.56) refers specifically to the Arrhenius equation (4.49), and not to any 523 

other equation for  0 T  that has a pre-exponential factor (AF in eq. (4.50) for example) that is 524 

often just termed A in the literature and can be confused with AA. To ensure that the argument of 525 

the logarithm function is explicitly dimensionless the following modified form is useful: 526 

 

 
 10 0log /

' 0 / 1
/

g

A

g

g
T T

d A
m T T

d T T





   .      (4.57) 527 

Equation (4.57) provides a mathematically direct derivation of mmin by simply demanding that 528 

the derivative in eq. (4.57) be independent of temperature. Angell [19] has described how mmin 529 

predicts the "universal" WLF parameter C1≈17. 530 

 The thermodynamic and kinetic definitions of fragility are equivalent if the Adam-Gibbs 531 

(AG) [18] model for liquid state transport properties is accepted. This model gives rise to 532 

equations that are almost indistinguishable from the Fulcher equation in most cases and 533 

for   /pC T C T   it  reproduces the Fulcher equat ion exactly. The ease with which 534 

this equation can be extended through the glass transition to the glassy state was quickly 535 

recognized by Macedo and Napolitano [20], Goldstein [21], Plazek and Magill [22,23] 536 

and Howell et al. [24], but was not used explicitly for enthalpy relaxation until the 537 

pioneering work of Scherer [25] and in later studies by Hodge [26]. 538 

The AG model is based on transition state theory and the hypothesis that a 539 

temperature dependent number of moieties need to rearrange cooperatively for relaxation 540 

to occur. The transition state activation energy AE  is approximated by 541 

AE z   ,            (4.58) 542 

where   is an elementary excitation energy per moiety and z is the number of moiet ies 543 
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that cooperatively rearrange. The linear addition of   for each moiety implicitly 544 

assumes that the moieties do not interact and this has been challenged by Ngai et al. 545 

who have proposed an alternative "coupling model"  [27]. Only the minimum value z* of z 546 

significantly contributes to the relaxation time  [18] and its value is assumed to be a 547 

funct ion of temperature derived by simplistically equat ing two expressions for the 548 

configurational entropy per moiety 549 

 

 

*

*

c c

A

S T s

N z T
 ,          (4.59) 550 

where  cS T  is the macroscopic configurational entropy (defined in eq. (4.61) 551 

below), NA is Avogadro's number, and *

cs  is the configurational entropy associated with the 552 

smallest number of particles capable of rearrang ing that is often taken to be ln 2Bk  (two 553 

configurations, one before and one after rearrangement). Explicitly 554 

 

 

*

0

*
exp exp exp A cA

AG AG

B B c

z T N sE
A A A

RT k T k TS T

 


    
             

,    (4.60) 555 

where a pre-exponent ial factor  
1

1 exp / Bk T


     has been equated to unity 556 

because typically Bk T  . The result that configurational entropy is the fundamental 557 

property that determines the rate of relaxation is plausible because if more 558 

configurations are available then relaxation is expected to be faster. 559 

The quantity Sc(T) is given by 560 
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 ,      (4.61) 561 

where T2 is the temperature at which Sc(T) is zero, denoted as such to  emphas ize 562 

that  it s equiva lence with the thermodynamic Kauzmann temperature TK (discussed 563 

below)  needs to  be established exper imentally.  Assessment of  pC T  is not trivial. 564 

It must  be obtained by extrapolations of Cp(T) that are necessarily uncer t ain in part  565 

because  the glassy heat  capacity Cp g(T)  must  be obtained at temperatures well 566 

below Tg to ensure that relaxat ion effects are not included in its temperature 567 

dependence, so that long extrapolations are required. Huang and Gupta [28] have 568 

evaluated expressions for Cp g(T)  suitable for extrapolation into and above the glass 569 

transit ion temperature range for a soda lime silicate glass. The function ΔCp(T) also 570 

depends on how Cpl is extrapolated. It is common to assume that ΔCp(Tg) is totally 571 

configurational but this has been challenged by Goldstein [29,30] who has argued 572 

that it  may contain significant contributions from vibrational and secondary relaxation 573 

sources. It is however possible that such non-configurational contributions to ΔCp(T) could 574 

also contribute to "Sc" in the AG model so that using  p
C T  regardless of its origin could still 575 

be valid. The debate about the configurational contribution to ΔCP(T) is therefore probably not 576 

resolvable because of all the unknown factors that determine structural relaxation. The default 577 
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position adopted here is that all the contributions to  p gC T  of whatever type contribute to 578 

structural relaxation. 579 

T h e  A G  f u n c t io n  f o r   0 T  d e p e n d s  o n  t h e  f u n c t io n a l  f o r m o f  580 

Δ C p ( T ) . For 581 

constantpC C             (4.62) 582 

the "AGL" function for the structural relaxation time is 583 
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        (4.63) 584 

where 585 
*

B

A c
AGL

N s
B

k C


 .          (4.64) 586 

Equation (4.63) is almost indist inguishable from the Fulcher equation and in fact 587 

retaining only the first term in the expansion of the logar ithmic term reproduces the 588 

Fulcher form. The expression 589 

  ' /p gC T C T T            (4.65) 590 

implies 591 

     2 21 / /c g gS T C T T T T T           (4.66) 592 

so that 593 
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,      (4.67) 594 

i.e. the Fulcher form is recovered with 595 
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.          (4.68) 596 

As noted in [8] eq. (4.65) has a stronger temperature dependence than that observed 597 

for most polymers, according to plots of the data compiled in [31]. However since eqs 598 

(4.63) and (4.67) are almost indistinguishable the AG model can probably accommodate most 599 

approximations to the Fulcher equation that are found experimentally [32,33]. 600 

Equations (4.59) and (4.66) imply that z* is proportional to  21/ 1 /T T . Thus 601 

z* and the barrier height *z   diverge as 2T T  and simplistically this divergence 602 

can be expected to prevent Tg approaching T2 [26,34] (assuming that T2 is indeed some 603 

sort of ideal Tg). Since z* is conceivably associated with some form of correlation length 604 

it is of interest that the correlation length computed from a random field Ising model also 605 

diverges as  1 /cT T


 [35], although no evidence for a correlation length was 606 

observed in a viscosity study of glycerol by Dixon et al. [36] nor in a molecular 607 

dynamics simulation by Ernst et al.  [37]. On the other hand if z* is interpreted in 608 

dynamic terms, for example as the minimum number of part icles needed for the 609 

ensemble averaged time correlation function to be independent of size, it would not 610 
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necessarily be seen structurally. It is also possible that z* corresponds in some way to 611 

the "dynamic characterist ic length" defined by the rat io of the frequency of the 612 

Raman "boson" peak to the speed of sound [38,39]. Adam-Gibbs behavior has been 613 

observed in a spin facilitated kinetic Ising model described by Frederickson [40] and as 614 

noted above the AG equat ion has also been extended through the glass transition to the 615 

glassy state (discussed in §4.8.3). 616 

 The assertion made above that the kinetic and thermodynamic definitions of 617 

fragility are made physically consistent by the AG model can now be explained. Since Sc 618 

is more strongly temperature dependent for greater ΔCp(Tg) (greater thermodynamic 619 

fragility) eq. (4.60) indicates that the structural relaxation time has a more non-Arrhenius 620 

temperature dependence and larger m [eq. (4.55)] (greater kinetic fragility). 621 

 622 

4.8.2   Glassy State Relaxation 623 

Because glasses are usually in a nonequilibrium state they can isothermally relax 624 

towards the equilibrium state. A discussion of this phenomenon has been given by Hodge 625 

[8,39]. There are two canonical aspects of glassy state relaxation kinetics – 626 

nonexponentiality and nonlinearity. The former is a characteristic of relaxation in 627 

essentially all condensed media (water is an except ion as usual) and has been discussed 628 

extensively in Chapter 1. Nonlinearity is absent for most electrical relaxation phenomena 629 

(Chapter 2) and becomes important for viscoelastic relaxation only for high stresses and 630 

strains – linear viscoelastic relaxation is still applicable for practically significant stresses 631 

and strains (Chapter 3). But for structural relaxation nonlinearity cannot be ignored for 632 

even small perturbations, and it is responsible for several observed phenomena such as 633 

glassy state relaxation occurring on human lifetime scales rather on inhuman scales of 634 

centuries or longer [41]. Experimental evidence for nonlinearity in glassy state relaxation 635 

is exemplified by the creep data of Struik [42] that are reproduced in [41]. Creep is 636 

essentially a quantitative measure of the fractional increase in length with time of a 637 

vertically suspended small diameter thread of material that has a hanging weight on it 638 

(Chapter 3). The data were recorded for time intervals that were about 10% of the 639 

annealing times ta. The creep curves move to longer times with increasing ta but the shape 640 

of each creep curve is essentially the same for all ta - thus the characteristic relaxation 641 

time increases with ta. A generally good description of the increase in relaxation time τ0 642 

with ta is given by the Struik relation 643 

0 aKt  ,           (4.69) 644 

where K has the dimensions of 1t   and is dependent on material and annealing 645 

temperature. The quantity 1   is an empirical parameter referred to here as the Struik 646 

shift parameter. The nonlinearity of relaxation expressions that contain eq. (4.69) is 647 

eliminated by the reduced time defined by [43,44] 648 
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so that for   1

0' 'at t      650 
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For the WW function [8] 653 
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 (4.72) 654 

where 655 

' 1              (4.73) 656 

and 657 

 
 1/ 1
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  .          (4.74) 658 

The mathematical equivalence of the linear and nonlinear WW equations exhibited in eq. 659 

(4.72) has engendered many published analyses that are physically unreasonable because 660 

in the name of "simplicity" they invoke the linear WW equation in situations that demand 661 

the consideration of nonlinearity, such as glassy state relaxation for which the Struik 662 

relation eq. (4.69) was originally observed experimentally. Some of these incorrect 663 

analyses are cited as refs. 53-60 in [8]. 664 

 Quantification of nonlinearity is simplified by defining a metric for the 665 

nonequilibrium state. The fictive temperature Tf introduced by Tool [45-47] is such a 666 

metric. It was originally suggested in an oral presentation in 1924, so that nonlinearity was 667 

recognized as being important to structural relaxation well before nonexponentiality was. 668 

Ironically Tool's analysis was for silicate glasses that are now known to have some of the 669 

least nonlinear structural relaxation kinetics. Qualitatively Tf is the temperature at which 670 

some non-equilibrium property (volume, enthalpy, entropy, relative permittivity, etc.) of a 671 

material would be the equilibrium one, and is typically different for different properties of 672 

the same material in the same state. Since Tf can be associated with any property the 673 

phenomenologies described below can be applied to any property. For enthalpy H, whose 674 

relaxation phenomenology is representative of all properties, Tf is defined by 675 

     ' '

fT

e f pg

T

H T H T C T dT   ,        (4.75) 676 

where He(Tf) is the equilibrium value of H at Tf and Cpg(T') is the temperature dependent 677 

isobaric heat capacity of the glass. Equation (4.75) is illustrated in [8] and its temperature 678 

derivative is (using eq. 1.18) 679 
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,       (4.76) 680 

where Cpe is the equilibrium (liquid or rubber) isobaric heat capacity and 
N

pC  is the 681 

normalized heat capacity. It is usually assumed that / N

f pdT dT C  but this is probably 682 



CHAPTER 4(15)    Page 21 of 38 

unjustified in general [48,49(Sindee Simon)]. 683 

 For polymers mechanical stresses (shear and tensile), hydrostatic pressure, and 684 

swelling induced by vapor absorption followed by rapid desorption, all decrease the 685 

average isothermal structural relaxation time in the glasses. Accounts of these effects are 686 

given in [8,50,51] that include many references to original publications on the effects of 687 

nonthermal perturbations on enthalpy relaxation in particular. Applications of the TNM 688 

phenomenology to these histories [50] often approximate applied stresses and pressure as 689 

isothermal changes in fictive temperature. An instructive example is the formation of 690 

"pressure densified polystyrene" by cooling the sample through the glass transition 691 

temperature range under hydrostatic pressure and then releasing the pressure in the glassy 692 

state (typically at room temperature). The resultant glass has a higher density and enthalpy 693 

than that prepared by cooling under ambient pressure and has a shorter structural 694 

relaxation time. The fact that relaxation is faster at a smaller volume is inconsistent with 695 

the free volume models frequently used by polymer physicists [52] but is consistent with 696 

enthalpy/entropy models such as Adam-Gibbs. 697 

 698 

4.8.3 The Glass Transition 699 

Introduction 700 

This vast subject is the focus of two excellent books by Donth [53,54] and at least 701 

three reviews [7,8,41], and its applications to material science have been well described 702 

by Scherer [55]. This section mainly considers the relaxation aspects of the glass 703 

transition phenomenon, although a brief general overview of it is given to provide a 704 

context for the relaxation phenomenology. In particular the intricate and still debated link 705 

between thermodynamics and kinetics for the observed glass transition phenomenon is 706 

discussed. 707 

 The glass transition is not understood at a fundamental level. When asked at the 708 

end of the 20
th

 century about the most important challenges awaiting 21
st
 century science, 709 

Nobel laureate Philip Anderson stated in Science [56] that "The deepest and most 710 

interesting unsolved problem in solid state theory is probably the theory of the nature of 711 

glass and the glass transition. …". He had earlier stated in Physics Today (1991) "… Glass 712 

itself remains one of the deepest puzzles in all of physics." This author's opinion is that 713 

new mathematics will be required before this puzzle is solved. 714 

 715 

Glass Transition Temperature 716 

 The phrase "glass transition temperature" is a misnomer because, as noted above 717 

(§4.8.1), the transition from a liquid (relaxation time << observation time) to a glass 718 

(relaxation time >> observation time) during cooling and heating occurs over a range of 719 

temperature. There is also confusion about the glass "transition" because it is not a 720 

transition in the traditional sense but rather a phenomenon that occurs over an unexpected 721 

and thus far theoretically unexplained narrow temperature range. Nonetheless an ASTM 722 

publication [57] compiles several contributions to a session on definitions of the glass 723 

transition temperature of which the contribution by Moynihan [58] is most relevant here. 724 

The ASTM specification for Tg by DSC is published at 725 
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www.astm.org/Standards/E1356.htm. An excellent account of the physics of the glass 726 

transition as a condensed matter phenomenon is given in Angell's review article [7].  727 

 There are three basic definitions of a DSC "Tg" that are in common use, all of 728 

which should (but not often enough) include a specification of scan rates (cooling and 729 

heating). Cooling rate is more important but for glasses formed at unknown cooling rates, 730 

or by vapor deposition, or by other nonthermal processes, only the heating rate is known 731 

but should still be specified. The three definitions are: 732 

(a) Midpoint.  The center of the transition temperature range. 733 

(b) Onset.  The temperature at which departure from the glassy heat capacity first 734 

occurs in a DSC heating scan. It is often determined by drawing a tangent line 735 

through the point of inflection of Cp(T) and taking Tg to be the temperature at 736 

which this line intersects the extrapolated glassy heat capacity.  It typically 737 

corresponds to the temperature at which the excess heat capacity over that of 738 

 pgC T  is 5 – 10% of ΔCp(Tg). 739 

(c) Glassy Fictive Temperature (no annealing). Computed from integration of the heat 740 

capacity. This is the best definition but also the least convenient. It typically has a 741 

similar value to the onset definition if the heating and cooling rates are comparable. 742 

As noted the first two definitions apply to both cooling and heating but values from 743 

cooling data are preferred. One reason for preferring cooling is that heat capacity 744 

overshoots and a strong dependence on the TNM parameters x and β make the heating data 745 

more dependent on material and thermal history [8]. 746 

As illustration of this issue consider the question "what is 'Tg' for an annealed glass 747 

compared with a non-annealed glass?" The answer depends on how Tg is defined. As just 748 

noted the best definition of Tg is the glassy state value of the fictive temperature Tf' and 749 

this decreases with annealing. However upon reheating enthalpy recovery occurs at higher 750 

temperatures because of nonlinearity – the lower glassy fictive temperature lengthens the 751 

starting average relaxation time so that higher temperatures must be reached before the 752 

average relaxation time becomes short enough for relaxation back to equilibrium to occur. 753 

The heat capacity increase from glassy values to liquid values upon heating therefore 754 

begins at a higher temperature and the midpoint and onset definitions of Tg increase. 755 

 The value of "Tg" that has been discussed above is generally not of great 756 

importance to the detailed kinetics of structural relaxation because the temperature 757 

dependencies of structural relaxation times scale with Tg and the value of Tg simply shifts 758 

the transition range along the temperature axis. One exception to this is that annealing 759 

behavior at temperature Ta is a strong function of Tg–Ta. Another exception is the 760 

composition dependence of "Tg" for binary mixtures of materials with very different 761 

values of Tg (polymer/solvent mixtures for example), that illustrates the flexibility of 762 

WW-type functions. The dependence of Tg on the concentration c of the lower Tg 763 

component is often well described by 764 

   0 expg gT c T kc
  

 
,         (4.77) 765 

where 
0

gT  is the higher value of Tg and k and β are empirical constants. Equation (4.77) 766 

was discovered and used by the present author in 1989 [59] without knowledge of the 767 

papers by Phillies et al., the first of which was published in 1985 [60]. The latter paper 768 

also discussed power laws for molecular weight and probe radius for light scattering that 769 

are subsumed into k in eq. (4.77). 770 

http://www.astm.org/Standards/E1356.htm
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 771 

Thermodynamic Aspects of the Glass Transition 772 

The isobaric heat capacity of a supercooled liquid exceeds that of the crystal at 773 

the same temperature so that the excess entropy of a liquid over that of the crystal 774 

decreases with decreasing temperature. Extrapolations for many materials suggest  that 775 

this excess entropy would vanish at a temperature well above abso lute zero. At this 776 

temperature the entropy of the supercooled liquid equals that of the crystal and if the 777 

same trend were to extend down to absolute zero the entropy of the liquid would be 778 

less than that of the crystal, in conflict with the third law of thermodynamics. This 779 

difficulty was first recognized by Kauzmann [61] and the extrapolated temperature at 780 

which the supercooled liquid and crystal entropies become equal is known as the 781 

Kauzmann temperature TK. The extrapolation is often referred to as the Kauzmann 782 

"paradox" because it seems paradoxical that the intervention of a kinetic event, the 783 

observed glass transition, averts rather a thermodynamic impossibility. The value of TK is 784 

calculated by equating the excess entropy of the liquid over that of the crystal to the 785 

entropy of melting ΔSm 786 
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,         (4.78) 787 

where Tm is the melting temperature. The uncertainty in TK is large, in part because ΔCp(T) 788 

is obtained by extrapolation and in part because of possible different crystal forms 789 

with different values of Tm and ΔSm. For some polymers the uncertainty is even larger 790 

because of a need to correct for tacticity and partial crystallinity. As noted above 791 

(§4.8.2) Goldstein [29,30] has argued that  ΔCp(T) is  probably not  entirely 792 

configurational and may contain significant contributions from vibrational and secondary 793 

relaxation sources. He estimated that between 20 and 80% of ΔCp(T) could originate from 794 

non-configurat ional sources and noted that this renders even more uncertain the 795 

extrapolations required to assess TK. However, as noted in the discussion of the Adam-796 

Gibbs model (§4.8.1), it  is possible that all contributions to ΔCp(T) contribute to the 797 

relaxation kinetics so that how ΔCp is partitioned is irrelevant. In any event calculated 798 

values of TK are always found to be less than Tg although in some cases the difference 799 

can be as small as 20 K [62,63]. The value of TK is often close to T0 of the VTF equation 800 

[64], suggesting again that the kinetic and thermodynamic aspects of the glass transition are 801 

related. 802 

Three resolutions of the thermodynamic difficulties imposed by TK>0 have been 803 

suggested. One is that the extrapolation of excess entropy to low temperatures has no 804 

firm basis and that the prediction TK>0 is a spurious result of inappropriate 805 

extrapolation [65,66]. As noted already, however, the extrapolation is only 20 K or so for 806 

some materials and a nonzero TK seems almost certain in these cases. There is also the 807 

possibility that the heat capacity decreases rapidly to nearly zero rather than 808 

mathematical zero at a temperature where the entropy is also small but nonzero. These 809 

ideas are quantified in the next paragraph about a possible Ehrenfest 2
nd

 order 810 

transition resolving the Kauzmann problem.  811 
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A second resolution, suggested by Kauzmann [61], is that the extrapolation is 812 

irrelevant because the thermodynamic driving force for crystallization would always 813 

intervene before the entropy problem manifested itself. However this intervention has 814 

been shown to be extremely unlikely in some systems [67], and it may actually be 815 

impossible in two bizarre syst ems (CrO 3-H2 O [68] and RbAc–H20 [69]) for which 816 

Tg exceeds the (extrapolated) eutectic temperature (the Kauzmann analysis can be 817 

applied to eutectic mixtures [67]). Also, a thermodynamic mechanism for crystallization 818 

always preventing low values of entropy to be attained has apparently not yet been 819 

suggested. 820 

The third resolut ion is that an Ehrenfest  second-order transit ion occurs at TK 821 

at which ΔCP(T) falls rapidly (simplistically instantaneously) to zero similar to that 822 

which is observed kinetically at Tg. The Ehrenfest second-order transit ion temperature 823 

TK is of course unobservable because of kinetic factors. It is difficult to refute this hypothesis 824 

other than to dismiss it as an artifact of extrapo lation, but as has just been noted this 825 

objection is itself weakened by the fact that very short extrapolat ions are needed in 826 

some cases. Furthermore an entropically based second-order transition at TK has been 827 

der ived for polymers by Gibbs and DiMarzio [70], and although this theory has 828 

been criticized [71] its predictions agree well with experimental observations near Tg, 829 

including those on the effect of molecular weight on Tg for polymeric rings [72,73]. 830 

There are also several two state models ([74,75] for example) that predict that ΔCp(T) 831 

passes through a maximum at Tmax which is necessarily below Tg because such a 832 

maximum has never been observed. If these models accommodate sharp decreases in 833 

ΔCp(T) below Tmax then they could essentially resolve the Kauzmann "paradox" without 834 

invoking an ideal Ehrenfest second order transition. For example a heat capacity function 835 

that mirrors the Debye dielectric loss function 836 

  2 21
p

C T
C T

T


 


,          (4.79) 837 

where C is a constant and max 1/T    has a maximum and a sharp decrease for maxT T . Note 838 

that for T >> Tmax eq. (4.79) yields Cp(T)   1/T that is often approximately observed and that as 839 

T approaches Tmax from above the T dependence becomes weaker than 1/T, as observed for many 840 

polymers [31]. Preliminary results [76] indicate that a good fit to the Fulcher equation is obtained 841 

from the heat capacity function given by eq. (4.79) for the temperature range Tg to 1.5Tg with a 842 

T0 value about three times smaller than Tmax [76]. Other preliminary calculations [76] suggest 843 

that good Fulcher fits also obtain using a combination of two halves of such "Debye loss" 844 

functions, in which eq. (4.79) describes Cp for T > Tmax = 1/Ω and a narrower version 845 
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        (4.80) 846 

for T < Tmax. Larger values of f produce sharper low frequency decreases in Cp(T) that in the 847 

limit f→∞ approaches the instantaneous decrease approximation. These heat capacity functions 848 

also yield good Fulcher fits with T0 values that approach the temperature T1/2 < Tmax at which ΔCp 849 

is half the maximum. Preliminary analyses [76] suggest that the ratio R = T0/T1/2 is 850 

approximately given by 851 

   1 0.64exp 2.33 1R f      .        (4.81) 852 
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 Angell [77] has proposed modifications to the Kauzmann analysis that suggest that a first 853 

order transition, rather than an Ehrenfest second order transition, occurs at the low temperature 854 

limit of a supercooled liquid. However true this may be it does not change the Adam-Gibbs 855 

ansatz for relaxation times because it only affects the calculation of TK and does not affect Sc 856 

apart from its behavior zero deep in the glassy state, and the latter does not affect the Adam-857 

Gibbs model above Tg. 858 

The Kauzmann analysis is not the only factor that suggests a thermodynamic 859 

dimension to the glass transition - two other observations also support it: 860 

(a) Glassy state relaxation data indicate that not only the creep data shown in [41] but 861 

also relaxation data for thermodynamic properties such as volume and enthalpy also shift 862 

to longer time scales with annealing. As noted in [41] this implies a link between the 863 

thermodynamic and nonlinear kinetic aspects of glassy state relaxation.  864 

(b) There is compelling circumstantial evidence that , for two component mixtures that 865 

are predicted or inferred to have an upper consulate phase separation temperature below 866 

Tg, the values of Tg are almost independent of composition [78]. A composition invariant 867 

Tg has also been observed in the LiCl-H2O system in which phase separation is directly 868 

observed [69,79]. This near constancy of Tg with composition corresponds to the near 869 

constancy of the chemical potential of each component and a link between 870 

thermodynamics and kinetics seems inescapable in these cases. 871 

 872 

Kinetics of the Glass Transition 873 

 The mathematical description of these kinetics must necessarily incorporate those of the 874 

supercooled liquid state (§4.8.2) and the glassy state (§4.8.3) as limiting cases. We describe here 875 

only those formalisms that invoke the equilibrium temperature T and the fictive temperature Tf – 876 

others such as the KAHR description are discussed in [8]. There are two expressions for 877 

 0 , fT T  in common use. The Tool-Narayanaswamy-Moynihan (TNM) expression [80] is a 878 

generalization of the Arrhenius equation: 879 
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,       (4.82) 880 

where 0 1x   is often referred to as the nonlinearity parameter. The value of h can be obtained 881 

from [80] 882 
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            (4.83) 883 

but the uncertainties are large (typically about ±20%). 884 

The NLAG ("Nonlinear Adam-Gibbs") or SH ("Scherer-Hodge") expression [25,26] is 885 

obtained from the AG equation (4.60) by assuming that Sc is a function of Tf rather than of T: 886 

   2
1 /

C f f
S T C T T             (4.84) 887 

so that 888 
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.        (4.85) 889 

Equation (4.85) has been called by several other names: Adam-Gibbs-Vogel (AGV), Adam-890 

Gibbs-Fulcher (AGF), in addition to NLAG and Scherer-Hodge (the last name is not this author's 891 
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choice but is increasingly common and so is used henceforth). The full and partial temperature 892 

derivatives of eq. (4.85) are 893 
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         (4.86) 894 

and 895 
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        (4.87) 896 

Applying eqs. (4.86) and (4.87) to the glass transition temperature range where the 897 

approximation f gT T T   is appropriate reveals that the TNM and SH parameters are related as 898 

[8, 26] 899 

21 / ;gx T T 
          (4.88) 900 

 2 1gT T x 
            (4.89) 901 

and 902 
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          (4.91) 904 

where Tg refers to the onset definition that is closer to the glassy state. Equation (4.91) is a 905 

generalization of eq. (4.51) that applies to the nonequilibrium glass transition temperature range. 906 

Equations (4.88) - (4.91) have proven to be good approximations. 907 

 A more general AG expression for the TNM nonlinearity parameter x in terms of ΔCp(Tg) 908 

and the residual configurational entropy Scg [8] is 909 
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,          (4.92) 910 

where again Tg refers to the onset definition. Equation (4.92) predicts lower values of x for larger 911 

values of ΔCp(Tg) and smaller values of Scg. 912 

 The relationship between the TNM nonlinearity parameter x and the Struik shift 913 

parameter μ is not simple. Essentially the Struik relation is a special case of TNM. A simplified 914 

analysis for restricted thermal histories has been given for pharmaceutical glasses [81] in which 915 

it was noted that μ depends on the annealing temperature Ta and the WW nonexponentiality 916 

parameter β as well as the nonlinearity parameter x. 917 

 The nonlinearity parameter x has been shown to be inversely related to the Angell 918 

fragility parameter m for the Scherer-Hodge (nonlinear Fulcher) equation [8,17,26]. Since the SH 919 

equation is usually a good description of  0ln , fT T  a general inverse relation between x and m 920 

seems probable although a rigorous mathematical derivation is not yet at hand. However a more 921 

general analysis than SH is now given that establishes some specific conditions required for an 922 

inverse relation between x and m to hold and contains the SH result as a special case. The 923 

relation 924 

     0 , expf mx fT T A f T g T  
 

        (4.93) 925 

is assumed that apart from the separation of variables is the most general function possible. The 926 
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corresponding fragility index m given by eq. (4.55) is (for Tf = T) 927 

 
            

1
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   (4.94) 928 

Full and partial differentiation of eq. (4.94) with respect to 1/T yields 929 
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and 931 
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so that 933 
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Equations (4.94) and (4.97) yield 935 

 

 
1

ln 10
.

/ 1/
f g

g

T T T

mRT
x

gdf d T
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The function  / 1/
gT

df d T  must be approximately equal to xh/R to ensure consistency with the 937 

experimentally observed TNM equation so that 938 
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          (4.99) 939 

The relationship between x and m therefore depends on the x-dependence of g(Tf = Tg). For the 940 

SH expression    
1

2

11 /g gg T T T x
     and m is exactly inversely proportional to x. 941 

 942 

Thermorheological Complexity 943 

 All the analyses discussed so far consider the TNM and SH parameters to be independent 944 

of temperature. However there are several reports scattered throughout the literature that some of 945 

these parameters are temperature dependent, in particular that the distributions of relaxation 946 

times depend on both T and Tf. The following discussion of this possibility draws heavily from 947 

[82]. 948 

 Consider first an Arrhenius temperature dependence for the structural relaxation time i  949 

corresponding to the component Ei of a distribution of activation energies 950 

ln ln i
i A

E
A

RT
   .          (4.100) 951 

For a Gaussian distribution of activation energies with standard deviation σE the standard 952 

deviation σlnτ in the corresponding logarithmic Gaussian distribution of relaxation times  lng   953 
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is therefore 954 

ln
E

RT



  .           (4.101) 955 

Thus any distribution of relaxation times is temperature dependent if there is an underlying 956 

distribution of activation energies. Since any physically reasonable distribution of activation 957 

energies for condensed media is unlikely to be a delta function thermorheological simplicity 958 

must be regarded as an approximation. For nonlinear expressions of relaxation times the 959 

distribution of  ln   is a function of both Tf as well as T. For example the SH expression yields, 960 

for a Gaussian distribution in B, 961 

 ln

21 /

B

fT T T



 


.          (4.102) 962 

Gaussian standard deviations have their counterparts in the widths of other distributions such as 963 

WW so that eqs. (4.101) and (4.102) are generally applicable. 964 

 Implementation of TRC phenomenologies requires that the decay function be expressed 965 

as a Prony series with coefficients gi that are T and Tf dependent [82]. For the WW decay 966 

function for example 967 
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 ,       (4.103) 968 

where the best fit values of both N and gi depend on β. This is computationally expensive 969 

because the coefficients gi must be recalculated at every temperature step although doing so 970 

every n > 1 steps may be a good approximation. Estimates by the present author suggest that 971 

computation times are probably around 0 110   days, depending on  g
T . 972 

 973 

4.9   Experimental DSC Results 974 

The DSC technique ("Differential Scanning Calorimetry") is not strictly calorimetry but 975 

the name is embedded in the literature and changing it here would serve no useful purpose. The 976 

technique measures heat capacity by recording the heat flow into a sample needed to maintain a 977 

programmed temperature during cooling and reheating. It is described here because enthalpy 978 

relaxation is a good surrogate for structural relaxation in general, and there are abundant 979 

experimental DSC data available for analysis because the technique is so experimentally 980 

convenient. Modifications of the technique such as modulated DSC (MDSC) are not discussed. 981 

The term "differential" originates from the fact that the difference in heat inputs to two 982 

separate instrument pans (sample and reference) is measured in order that the sample and 983 

reference be at the same temperature during heating and cooling. Heat input into the reference 984 

pan is adjusted to maintain the specified rate of change of temperature – for cooling this requires 985 

a cold bath (typically ice/water, dry ice or liquid nitrogen) in thermal contact with the reference 986 

pan (for liquid nitrogen coolant helium is needed as a carrier gas because nitrogen could 987 

obviously condense). The heat capacity is then computed from 988 

  ,c hp

dq dT dq
C T T

dt dt dt

     
      
     

,       (4.104) 989 

where ,c hT  is the cooling/heating rate and dq/dt is the measured differential heat input (typically 990 

given in mW). Note that for any given Cp the differential heat input dq/dt is proportional to ,c hT  991 
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so that there is a lower limit to ,c hT  that is determined by instrumental sensitivity. 992 

Thermal lag shifts the DSC temperature calibration by an amount hth T  ([83] and 993 

references therein). This is the basis of temperature calibration that usually uses the melting 994 

temperature of a standard material (often indium) and preferably of two (the second is often 995 

zinc). However the value of τth for pure metals is undoubtedly smaller than for most amorphous 996 

materials, especially polymers, because of the larger thermal conductivity of metals. Hodge and 997 

Heslin [83] reported a value of 5 ± 0.5 s obtained from indium temperature calibration compared 998 

with 15-17 s for their polymer sample. This discrepancy is atypically large because the sample 999 

shape was deliberately irregular in order to maximize heat transfer effects but it does illustrate 1000 

the uncertainties in temperature calibration. 1001 

 Sample preparation is straight forward and experimental reproducibility is generally 1002 

excellent for inorganic and simple organic glasses. Polymers present several complications of 1003 

which sample reproducibility is probably the most important. Variables such as molecular 1004 

weight, molecular weight distribution and degree of crystallinity are too often not reported or are 1005 

just implicit in the identification of the manufacturer and/or product name. Crystallinity and 1006 

crystal morphology can also be affected by thermal histories before a DSC run – for example the 1007 

temperature and time spent above Tg for stabilization. Even when these are stated it is difficult to 1008 

quantify any material changes, particularly in crystallinity or crystal morphology. For example 1009 

changes in the micro crystallinity of PVC with the temperature excursions required to make the 1010 

traditional sample disk that were employed by Pappin et al. [84] were almost certainly the cause 1011 

of their TNM parameters being significantly different [8] from those found by Hodge and Berens 1012 

[81], who used the original powdered PVC material that was sent to the authors of [84]. 1013 

 The reproducibility of the heat capacity over the glass transition temperature range during 1014 

constant cooling and heating rates is a good test of the TNM formalism and passes with flying 1015 

colors. Hodge and Berens later introduced annealing times into the Moynihan calculations [85]. 1016 

All these calculations combine the TNM expression eq. (4.82) or SH expression eq. (4.85), the 1017 

reduced time eq. (4.70), and Boltzmann superposition (Chapter One). These calculations are 1018 

discussed here because they illustrate many aspects of structural relaxation kinetics and provide 1019 

many insights into the glass transition phenomenon. 1020 

 During DSC scanning both T and Tf change with time (for isothermal annealing only Tf 1021 

changes of course). Thus the reduced time eq. (4.70) can be expressed in terms of the TNM eq. 1022 

(4.82) or SH eq. (4.85) using time dependent T and Tf: 1023 
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.       (4.106) 1026 

This is the first step in computing Tf[T(t)] and thence /fdT dT . The second step is to introduce 1027 

Boltzmann superposition by representing rate cooling and heating as a sequence of temperature 1028 

jumps ΔT (typically constant but not necessarily so, see below). The final result for TNM is  1029 
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   (4.107) 1030 

and that for SH is  1031 
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   (4.108) 1032 

For eqs. (4.107) and (4.108) the integral within the square brackets is the reduced time integral 1033 

eq. (4.70) and the occurrence of Tf on both sides of eqs. (4.107) and (4.108) expresses 1034 

nonlinearity. For computations the integrals are of course replaced by summations for which dT' 1035 

is replaced by ΔT' and dt' is replaced by Δt'. The value of Δt' is variable for annealing, and ΔT' is 1036 

variable for large overshoots in 
N

pC [83], as discussed below. 1037 

 The agreement between computed TNM and experimental 
N

pC  is generally excellent [79] 1038 

for inorganic materials and thermal histories without annealing. The SH formalism does not 1039 

generally improve on these results. For organic polymers and for thermal histories that include 1040 

isothermal annealing [85,86], however, the agreement is less satisfactory. The reasons for these 1041 

discrepancies are discussed below and include the fact that the gamut of TNM parameters for 1042 

organic polymers is typically larger, in particular the lowest values of x and β for polymers are 1043 

much smaller than those of the lowest values for inorganic materials [8]. 1044 

 1045 

4.9.1   Data Analysis 1046 

 The general computation conditions reported by Hodge and Heslin [83] are listed below. 1047 

Unfortunately these conditions cannot be compared with those given in most other reports 1048 

because the latter often provide insufficient detail. Computation times for thermal histories 1049 

without annealing are typically about 2 s on modest computers using Matlab® or Gnu Octave, 1050 

and optimization times for thermal histories that include annealing are typically 20 – 30 minutes. 1051 

(a)  The currently used value of ΔT is 0.1 K except for 
N

pC  overshoots in excess of 1.0. For the 1052 

latter the temperature steps are reduced in inverse proportion to 
N

pC  for the previous step – for 1053 

example for 2.5N

pC   the following temperature step is 0.1/ 2.5 0.04 K. Computed values of 1054 

dTf/dT at the regular temperature intervals needed for comparison with experiment are obtained 1055 

by cubic spline interpolation. 1056 

(b)  Annealing times are divided into 100 logarithmically even intervals per decade, from 0.1s to 1057 

the annealing time ta in seconds, using the Matlab®/GNU Octave logspace function. For 1058 

example for ta = 24 hours 48.64 10  s the number of annealing intervals is 594. Very long 1059 
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annealing times increase the calculation time significantly beyond the 2 s or so needed for 1060 

thermal histories without annealing. 1061 

(c)  The WW function is used explicitly (rather than being approximated as a Prony series as 1062 

done earlier to reduce computation times that are no longer problematic). 1063 

(d)  The Matlab®/GNU Octave fminsearch (simplex) function is used for optimization. This 1064 

algorithm allows optimization of all four TNM and SH parameters and does not readily get 1065 

trapped in a local minimum. 1066 

Thermal lag effects are corrected for by using experimentally determined thermal 1067 

constants 
th . The effects of 

th  have been discussed ever since the DSC technique was 1068 

introduced (see refs in [8]) and have been analyzed in detail by Hodge and Heslin [83] with 1069 

regard to the TNM formalism. The Hodge/Heslin value of 
th  was determined from the changes 1070 

in heat flow and measured heating rate as a function of time following a programmed change in 1071 

heating rate and equating 
th  to the displacement of one from the other (15 s in this case). The 1072 

curve shapes were approximately the same so that this displacement implied an exponential 1073 

Heaviside response function with a time constant of 15 s. When the researchers corrected for this 1074 

time constant of the experimental 
N

pC  data for no annealing were independent of the ratio /h cT T  1075 

within uncertainties, as predicted by the TNM model (including a /h cT T  = 25 K/min history for 1076 

which the original data exhibited no overshoot at all). Since the TNM model gives a very good 1077 

account of 
N

pC  when h cT T  the confirmation of this prediction using an exponential Heaviside 1078 

response function indicates that the latter is a good approximation. 1079 

The expression for deconvoluting observed experimental data ,

N

p obsC  to produce the true 1080 

"original" ,

N

p origC  is 1081 

   
 ,

, ,

p obs

p orig p obs th

dC t
C t C t

dt


 
   

 
        (4.109) 1082 

or 1083 

   
 ,

, ,

p obs
hp orig p obs th

dC T
C T C T T

dT


 
   

 
.       (4.110) 1084 

A similar analysis is implied in publications by Hutchinson et al. [87,88] although no details 1085 

were given. 1086 

4.9.2   Sub-Tg Annealing Endotherms 1087 

 As noted above Hodge and Berens [85] were the first to apply the TNM formalism to 1088 

polymers and thermal histories that included annealing. When they applied it to the polymer 1089 

PVC they found that it required TNM parameters x and β far smaller than any of those reported 1090 

for inorganic materials. These extreme parameters produced a surprising result – upon reheating 1091 

the enthalpy lost during annealing was sometimes recovered well below the glass transition 1092 

temperature range to produce sub-Tg peaks in the heat capacity. These peaks are well reproduced 1093 

by the TNM and SH formalisms. Similar annealing peaks have also been observed for PMMA 1094 

[86] (albeit closer to Tg) and are also well reproduced by the TNM and SN formalisms [86]. 1095 

The explanation of these peaks was not recognized in 1995 when the effects of annealing 1096 

on polymers were reviewed [41]. To explain the peaks it is first useful to be reminded that 1097 
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nonexponential decay functions such as WW can be expressed as a Prony series [§1.4.3.1] of 1098 

exponential decay functions with different relaxation times and weighting factors that are the 1099 

equivalent of a distribution of relaxation times: 1100 

10

exp exp
N

n

n n

t t
g



 

    
     
     

 .        (4.111) 1101 

Lesikar and Moynihan [89,90] introduced a formal order parameter description of the glass 1102 

transition that associated each τn with a fictive temperature Tf,n  such that 1103 

,

1

N

f n f n

n

T g T


            (4.112) 1104 

with 1105 

1

1
N

n

n

g


 .           (4.113) 1106 

When each τn was initially made a function of Tf,n they found that the fits to experimental data 1107 

were worse than if 0  (and hence all τn) were determined by the global Tf. This is the key to why 1108 

sub-Tg endotherms can occur. During initial heating of an annealed glass with low Tf  and long 1109 

0  the shortest τn components relax first and contribute to a decrease in   so that the global Tf 1110 

increases towards the un-annealed value and /N

p fC dT dT  also increases. Equivalently the 1111 

initially rapid decrease in  t  for a nonexponential decay function such as WW also enables 1112 

partial relaxation to occur and therefore changes the global 0  and Tf . The decrease in the global 1113 

0  makes further changes in 
N

pC  more rapid well below Tg. As Tf  approaches the glassy Tf' that 1114 

existed before annealing its rate of approach towards Tf' decreases and 
N

pC  decreases until the 1115 

onset of the glass transition temperature range is approached at 'fT  - this produces the observed 1116 

sub-Tg peak in 
N

pC . This analysis also explains why sub-Tg endotherms that occur well below the 1117 

Tg range are essentially superimposed on the glass transition for unannealed glasses. Note that 1118 

both nonexponentiality and nonlinearity come into play here. The more rapidly the initial 1119 

decrease in Tf  is during heating the faster the distribution moves to shorter times because of 1120 

nonlinearity, and the rapidity of the initial decrease in Tf  depends on nonexponentiality. 1121 

 Not all sub-Tg endotherms are generated by enthalpy relaxation. There is always the 1122 

possibility that they are produced by the melting of crystals or crystallites formed during 1123 

annealing. An unpublished result by Hodge [91] provides a good example of how easily the two 1124 

possibilities can be confused, especially if estimates of experimental uncertainties are too 1125 

pessimistic. Hodge re-analyzed the DSC data of Johari et al. [92] on annealed hydrated proteins 1126 

that exhibited broad and weak endotherms when scanned after annealing at several temperatures. 1127 

The experimental uncertainties in the widths and peak heights of the endotherms were estimated 1128 

to be large because of a sloping and curved background, but TNM parameters were nevertheless 1129 

found that fitted the data much better than the initial set of parameters suggested in [92]: 1130 

  4ln 80; / 2.0 10 K; 1.0; 0.04A s h R x       . The largest discrepancy between observed 1131 

and calculated endotherm properties was the annealing temperature dependence of the 1132 
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endotherm magnitudes but this was thought to be within experimental uncertainty. However, 1133 

Tombari and Johari later reported [93] that the endotherms were almost certainly due to melting 1134 

of crystals of NaCl.2H2O in the commercial samples of the hydrated proteins, formed during 1135 

annealing. Hodge's estimates of the experimental endotherm areas passed through a maximum at 1136 

an annealing temperature 238K that was 14K below the melting temperature 252K of the 1137 

crystals, near which a maximum rate of crystallization might reasonably be expected. 1138 

 1139 

4.9.3   TNM Parameters 1140 

 There are rough correlations between the TNM parameters x and h and between x and β 1141 

[32,33,86] but they are weak and are at best suggestive of, rather than compelling evidence for, 1142 

any possible underlying cause. The WW β parameter has the least uncertainty and the value of h 1143 

can be obtained without TNM optimization so that in principle any correlation between h and β 1144 

will have the smallest statistical uncertainty, but remarkably no plot of h versus β has been 1145 

published to this author's knowledge. For most of the data in Table 1 in [8] (the omitted data are 1146 

those for which β is not listed) such a plot indeed reveals less scatter but the correlation remains 1147 

weak, as indicated by the correlation coefficient 0.64 for h versus β compared with 0.42 for h 1148 

versus x and 0.41 for x versus β. 1149 

 1150 

4.9.4   SH Parameters 1151 

Equations (4.89) and (4.90) have been confirmed for those cases when the TNM and SH 1152 

models have been fitted to the same data. Most reported SH parameters are obtained from TNM 1153 

fits using these equations because TNM parameters are much more common (many pre-date the 1154 

introduction of the SH formalism). As noted above the SH formalism does not generally give 1155 

improved fits compared with TNM [26] but the SH parameters can be more plausibly linked to 1156 

possible molecular factors, discussed next. 1157 

 Consider first the AG parameters 
*

cs  and Δμ in eq. (4.64). This equation indicates that C 1158 

and 
*

cs  are both needed before Δμ can be obtained from experimental values of BSH. For this 1159 

purpose it is convenient to define ΔCp(T) as 1160 

  ' /p gC T C T T            (4.114) 1161 

so that C' equals  p gC T  and eq. (4.64) becomes 1162 

 
 

 

* * ln

'
B B

AA c A c
SH

g g p g g p g

NN s N s
B

k C T k T C T T C T

    
  

 
.      (4.115) 1163 

The unit of mass also needs to be defined and for this the concept of a "bead" introduced by 1164 

Wunderlich and Jones [94] is helpful. Wunderlich defined the bead as the monomer segment of a 1165 

polymer (such as –CH2– in polyethylene), and for small molecules it is a similarly small 1166 

chemical entity (for example toluene is regarded as having two beads corresponding to the 1167 

phenyl ring and the methyl substituent). For inorganic materials the bead is considered to be a 1168 

rotatable unit such as a sulfate or nitrate, either as ions or groups covalently bound to a larger 1169 

molecule. These examples indicate that the bead is an intuitive rather than a rigorous metric for 1170 

mass.  1171 

 The value of 
*

cs  is also intuitive and is fraught with uncertainties. The most commonly 1172 

assumed value is 1173 
* ln 2c Bs k            (4.116) 1174 
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because there is a minimum of two configurations – those before and after rearrangement. At 1175 

least two exceptions to this have been discussed, however. First, Sales [95] reversed the logic by 1176 

equating Δμ with the P – O bond strength and discussed the derived values of *

cs  in terms of the 1177 

coordination number of phosphates around various cations. He found that the differences in *

cs  1178 

values were consistent with the known differences in coordination geometries of the cations. 1179 

Second, Hodge [26] suggested that eq. (4.116) is inappropriate for polymers because of 1180 

constraints imposed by consecutive covalent bonds, and eq. (4.116) was replaced by [96] 1181 
* 3ln 2 ln8c B Bs k k  ,          (4.117) 1182 

because "…two rotational states are available to each segment and [a] crankshaft motion is 1183 

assumed to involve 3 segments…". If three distinguishable rotational states per segment and no 1184 

crankshaft motion is assumed then for two adjacent segments 1185 
* 2ln3 ln9c B Bs k k  .          (4.118) 1186 

The difference between ln 8 and ln 9 is smaller than any reasonable uncertainty in 
*

cs . For large 1187 

nonpolymeric molecules that are not linear the crankshaft motion is probably irrelevant and it is 1188 

reasonable to extend eq. (4.118) to 1189 
* 1ln3N

c Bs k  ,           (4.119) 1190 

where N is the number of beads (segments) and N-1 is the number of rotatable bonds between 1191 

them. Equation (4.119) has not been suggested before and like eq. (4.117) for polymers it has 1192 

dubious statistical rigor so that values of Δμ derived from it must be regarded as approximate. 1193 

Because of intra- and inter- molecular geometrical constraints the number of configurations for 1194 

large molecules is probably less that that given by eq. (4.119) and derived values of Δμ should 1195 

therefore be regarded as minimum ones. 1196 

Hodge and O'Reilly [96] analyzed the SH parameters for five nonpolymeric organic 1197 

molecules: the ortho-, meta- and para- (o-, m-, p-) isomers of indane, o-terphenyl (OTP), and tri-1198 

α-naphthyl benzene (TNB). The chemical formulae for these materials are given in [96]. Their 1199 

data are discussed in detail here (more than in the original publication) for two reasons: (i) re-1200 

evaluations of 
*

cs  using eq. (4.119); (ii) revised SH values of Δμ based on these new values of 1201 
*

cs . Data from [96] are summarized in Table 4.1 that combines entries in Tables 1 and 4 of [96] 1202 

as well as results from the new calculations. The values of N correspond to the original number 1203 

11 as well as the number of Wunderlich segments for the three indane isomers cited in [96]. The 1204 

units of Δμ are kJ mol
-1

, not kJ (mol-bonds)
-1

 as stated in [96]. The boldface Δμ entries 1205 

correspond to the values of N associated with each material. 1206 

1207 
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TABLE 4.1 1208 

QUANTITY o-indane m-indane p-indane OTP TNB 

Tg (K) 357 359 385 240 340 

ΔCp(Tg) [JK
-1

mol
-1

] 161 198 182 113 150 

B (K) 4500 2600 7400 4400 2100 

T2 (K) 280 300 280 180 260 

Δμ (N=10) [kJmol
-1

] 95 63 190 68 42 

Δμ (N=11) [kJmol
-1

] 86 56 170 61 38 

Δμ (N=13) [kJmol
-1

] 71 47 140 51 31 

Δμ (N=14) [kJmol
-1

] 66 43 130 47 29 

Δμ (N=16) [kJmol
-1

] 57 38 110 41 25 

Δμ (N=17) [kJmol
-1

] 53 35 110 38 23 

 1209 

Inter-segmental rotational energy barriers ΔE are given by the values of Δμ divided by N-1. 1210 

Using N = 11 for the (o-, m-, p-) indanes yields ΔE = 9, 6, 17 kJ/bond that are smaller than 1211 

typical rotational energy barriers for isolated molecules by a factor of 2 or so, and probably by 1212 

more for molecules constrained in condensed media, but as noted above the cited Δμ values are 1213 

minimum ones. The Wunderlich N values for the o-, m- and p- indane isomers are 14, 17 and 16 1214 

respectively and these give even smaller values of ΔE. For OTP the number of Wunderlich 1215 

segments is 113/11.3 = 10 and the average rotational energy barrier is 61kJ/10 = 6.1 kJ, and for 1216 

TNB the number of beads 150/11.3(?) = 13 and the average rotational energy barrier is 1217 

38kJ/12(?) = 3 kJ. Both these barrier energies are also too small but are again minimum ones. 1218 

 The weak correlations between the TNM parameters become stronger when they are 1219 

expressed in terms of SH parameters. In particular when the SH parameter  
1

2/ 1gT T x


   is 1220 

plotted against BSH 2 /x h R  and materials are separated into plausible molecular types [32,33] 1221 

three linear correlations are clearly evident (if two suspiciously outlying polystyrene data are 1222 

removed the polymer correlation is better). There is an indisputable extrapolation towards Tg/T2 1223 

→ 1 as BSH → 0 for each of the three correlation lines. Since BSH is proportional to Δμ in the AG 1224 

model and the proportionality constant cannot be zero the extrapolation B → 0 corresponds 1225 

unambiguously to Δμ → 0 and suggests that as Δμ approaches zero there is no (average) barrier 1226 

to prevent Tg approaching some fundamental amorphous state temperature that could be 1227 

approximated by T2 and/or TK ("ideal glass", see §4.2.2.6). This in turn again suggests that some 1228 

fundamental lower limit to Tg is possible that could have thermodynamic roots and could even be 1229 

a candidate for Fermi's "not theoretically impossible" state of small but nonzero entropy at 0 K 1230 

(§4.2.2.6 and [1]). 1231 

1232 
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